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SUFFICIENT DIMENSION REDUCTION IN REGRESSIONS 

WITH CATEGORICAL PREDICTORS 


BY FRANCESCA AND BINGLICHIAROMONTE, R. DENNISCOOK' 

Pennsylvania State University, University of Minnesota 
and Pennsylvania State University 

In this article, we describe how the theory of sufficient dimension reduc- 
tion, and a well-known inference method for it (sliced inverse regression), 
can be extended to regression analyses involving both quantitative and cate- 
gorical predictor variables. As statistics faces an increasing need for effective 
analysis strategies for high-dimensional data, the results we present signifi- 
cantly widen the applicative scope of sufficient dimension reduction and open 
the way for a new class of theoretical and methodological developments. 

1. Introduction. Typical regression analyses investigate the dependence of 
a response Y on a vector X of p predictors. Although the focus is often on the 
mean function E(Y IX), and perhaps the variance function Var(Y IX), the general 
object of interest is the conditional distribution of Y IX, as a function of the value 
assumed by X. For these settings, suflcient dimension reduction permits us to 
restrict attention to a projection P8X of the predictor vector X onto a subspace 8 
of the predictor space, without loss of information on Y JX. This reduction precedes 
the familiar model-building exercises which can therefore be limited to a number 
d 5 11 of new predictors, expressed as linear colnbinations of the original ones: 
v;X, . . . ,v&X,where {v l ,. . . ,vd) is a basis of 8. In applications, the drop in 
dimension is often substantial even when starting with large p's; d's equal to 1 or 2 
are comlnon in practice, and they allow a fully informative and direct visualization 
of the original regression through a plot of Y versus the new predictors. 

Methodological implementations such as sliced inverse regression [SIR; Li 
(1 991)] and sliced average variance estimation [SAVE; Cook and Weisberg (1991)l 
of this general paradigm have been limited primarily to regressions with many- 
valued, possibly continuous, quantitative predictors because it is in such settings 
that dimension reduction may be particularly relevant. Straightforward application 
to regressions that include qualitative predictors such as species, sex or location 
may be inappropriate because then relevance of the linear combinations involving 
qualitative variables can be elusive. 

In this article, we extend sufficient dimension reduction to regressions that 
include a qualitative predictor W in addition to a vector X of many-valued 
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predictors. The predictor W may represent a single qualitative variable, such as 
species, or a combination of such variables, such as species and location. It may 
also be a continuous predictor that is represented in too few values for linear 
combinations to be useful, or a categorical version of a continuous predictor. In 
short, we consider the regression of Y on (X, W), where the predictors in X are 
many-valued and W identifies a number of subpopulations, say w = 1 ,  . . . , C. 

We approach dimension reduction in the regression of Y on (X, W) by seeking 
a projection P8(w)X of X that preserves information on Y J(X, W); that is, we 
"constrain" the reduction of X through the subpopulations established by W. 

Letting {vl ,  . . . ,vd) be a basis of .S("), model-building is then aided by 
visualizing the original regression through a plot of Y versus the new predictors 
v;X, . . . ,v&X with points marked to indicate the W subpopulations. 

We refer to this as ynrtinl dimension reduction of X, for the regression of Y on 
(X, W). We will see how this approach need not coincide with marginal dimension 
reduction for the regression of Y on X, nor with conditiorznl dimension reduction 
for the regression of Y on X within the subpopulations identified by W .  But we 
will also see how partial, marginal and conditional dimension reduction are related 
to one another. These relationships are at the core of the inference methods we 
propose for partial dimension reduction. 

In Section 2 we review some key concepts and briefly describe one inference 
method for sufficient dimension reduction: sliced inverse regression. In Section 3 
we introduce partial sufficient dimension reduction and map its connections to 
marginal and conditional reduction. Section 4 is dedicated to the development of 
sliced inverse regression for partial reduction. This development includes large 
sample testing for the dimension of the subspace 8("). Final remarks are given 
in Section 5 .  Proofs for most propositions in the paper are provided in a technical 
appendix. 

2. Sufficient dimension reduction. Consider the regression of Y on X E RP. 
In sufficient dimension reduction, the main object of interest is the intersection of 
all subspaces 8 G IWP such that 

where P(.)stands for the projection operator in the standard inner product and 11 
indicates independence. The statement is thus that Y is independent of X given 
any value for Pax.When the intersection itself satisfies the above conditional 
independence condition, it is called the central subspnce (CS) of the regression 
and is indicated with 8 ( x .Its dimension d r l x= dim(.Sy (p) is called the structur.nl 
dirnerzsiorz of the regression. A plot of Y versus P8,,,X, the latter being expressed 
through any basis of 8y lx ,  is called the cerztml view of the regression, with the 
understanding that it may be directly visualizable only when dy  lxis small. 

The CS does not exist for all regressions; some assumptions are required to 
guarantee that the intersection of all subspaces satisfying (1) does itself satisfy 
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the condition. Because these assumptions permit a broad range of practical 
applications, we do not view the existence issue as worrisome and thus we assume 
that central subspaces exist for all regressions considered in this article. For 
background on this issue and an introduction to the associated literature, see Cook 
(1 998, Chapter 6), Cook and Weisberg (1999a) and Chiaromonte and Cook (2002). 

The CS represents the minimal subspace that preserves the original information 
relative to the regression, in the sense that the conditional distribution of Y IPyq,X 
is the same as the conditional distribution of Y IX. Being defined as an intersection, 
this minimal subspace is unique and thus constitutes a well-defined object of 
inference. 

d r l x  has several useful properties, among which is straightforward behavior 
under full rank affine transformations of the predictor vector: if a E PS? and 
A: R"-t IW" is a full rank linear operator, then 

The structural dimension does not change (dYla+AX = dYIX),and the two spaces 
can be obtained from one another through the A operator. Because of (2), 
indicating with p and C the mean and covariance of X and assuming that C is 
invertible, we usually shift attention to the standardized predictor Z = c - ~ / ~ ( x-
p )  and the corresponding space d y Z .  The CS on the original predictor scale is 
then given by 8 y l x  = ~ - l / ~ d y ~ z .  

Several graphical and numerical methods for the estimation of the CS are avail- 
able. In this paper, we concentrate on sliced inverse regression [Li (1991)], al- 
though other methods can be adapted to partial dimension reduction along the lines 
developed here. The following review of SIR departs slightly from the literature, 
as it is given for later comparison with SIR for partial dimension reduction. 

2.1. Sliced inverse regression. Sliced inverse regression is based on a funda- 
mental result by Li (1991): if the interdependencies within the predictor vector are 
linear along the CS, that is, 

(3) E(ZIPB,,,Z) = P4,,,Z, 

then E(ZJ Y) E 8 Z .  TO allow relatively easy estimation of the inverse mean vector 
E(ZJ Y), the response is replaced with a discrete version ?, with finite support 
constructed by partitioning the range of Y into H slices. Under (3) one has then 

so that the covariance of the inverse mean vector 

(4) o = COV(E(ZI?))=E(E(zJ?)E(zJ?)') 

has column span Span(@) E d r z .  In addition to the linearity condition (3), it is 
also often assumed that @ allows us to recover the whole CS: letting Po be the 
projection on Span(@), one postulates that 

( 5 )  Y lLZIP@Z, 
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which is equivalent to Span(@) 18 ~ 1 ~ .Together with (3), this coverage condition 
guarantees Span(@) = gYlz .In summary, the population basis for SIR is as 
follows: 

PROPOSITION Under linearity (3) and coverage (S), @ as defined in (4)2.1. 
has Span(@) = 8 ~ ~ 2 .  

The central subspace can then be reconstructed as 

where d = rank(@), and the t j 's are the eigenvectors corresponding to eigenvalues 
Q j  # O in the spectral decomposition 

(here and elsewhere, eigenvalues are listed in nonincreasing order). Thus, in 
practice, d r l z  is estimated as the span of the eigenvectors of 6, a sample 
version of @, whose eigenvalues are inferred to correspond to nonzero population 
eigenvalues. 

Assuming that an iid sample (Xi, Yi), i = 1, . . . ,n ,  from the joint distribution 
of (X, Y) is available, SIR is applied according to the following algorithm: 
Using moment estimates b, 5 for the mean and covariance of X, the predictor 

observations are standardized to zi = X 
- -112 

(Xi - b) ,  i = 1, . . . ,n .  Then, creating 
a system of s = 1, . . . , H slices on the sample range of Y, one calculates intraslice 
mean vectors as 

where the sum is over the indices i of response observations Yi that fall into slice s ,  
and n ,  is the number of observations in slice s .  Since the mean vectors Z ,  average 
to O over the slices (i~ . r = ~= 0), a sample version of 0 is then constructed n , ~ ,  
as 

and decomposed spectrally as 
11 

The eigenvalues of 6 are used to produce an estimate 2 of d = rank(@) (see 
Section 2.2). while the eigenvectors are used to construct span(il,  . . . , i;), which 
estimates a lower bound under (3), and the whole J Y l zunder (3) and (5). 
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Back to the X-scale, one forms SIR predictors as ?\X, . . . , ?i,X, where 

and constructs the estimated (1 t&-dimensional central view for the regression 
as the plot of Y versus the first 2of such predictors. 

2.2. Large sample testing for the rank of O .  A summary plot of the response 
versus the first few SIR predictors, or a scatter-plot matrix of the response and all 
11 SIR predictors, is generally informative regardless of d .  Nevertheless, since cl is 
usually unknown, inference about it is helpful to the practical effectiveness of SIR. 
Using the test statistic 

Li (1991) proposed to estimate d by testing a series of hypotheses of the form 
H,: d = m versus Ha: d > m. Beginning with rn = 0, compare T (m) to the 
percentage points of its distribution under the null hypothesis d = m. If it is 
smaller, there is no significant evidence against the null hypothesis. If it is 
larger, we conclude that d > m,  increment m by 1 and repeat the procedure. 
The estimate L? = m follows when T(m - 1) is relatively large, implying that 
d > m - 1, while T(m) is relatively small, so that d = m cannot be rejected. 
Implementation of this procedure requires a null distribution for T (d). Li showed 
that, when the predictors are normally distributed and the coverage assumption 
holds, the asymptotic distribution of T(d) is X 2  with ( H  - d - l ) (p  - d) degrees 
of freedom. Extensions of this distributional result were studied by Cook [(1998), 
Chapter 111, Schott (1994) and Velilla (1998). For coinparison with SIR for partial 
dimension reduction, we state the following: 

PROPOSITION Let d rank(@), let P g  be the projection on Span(@) 2.2. = 

and let Q g  = IP- P g .  If(a) Y lLZIPgZ, (b) E(ZIPOZ) = P g Z  and (c) Cov(Z1 
PoZ) = Qo,  then the asymptotic distribution of T(d) dejirzed in (6) is a 
x ( ~ - ~ ~ - ~ ) ( ~ - ~ ~ ) ,H response slices used in the SIRwhere is the number of 

algorithm. 


Note that (a) corresponds to coverage (3,and (b) to linearity (3) under 
coverage; (c) is a constant covariance condition required to obtain the asymptotic 
x'. Note also that linearity and constant covariance are satisfied when the predictor 
vector is normal [see, e.g., Cook (1998), Section 7.3.21. 

2 
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2.3. Illustration: learz body mass vegressiorz. Several studies have investigated 
the relationship between body fat and various predictors with the goal of identify- 
ing overweight individuals and understanding factors that may be associated with 
this condition. An introduction to the literature on this topic was given by Nevi11 
and Holder (1995). In this illustration, which is continued later in the article, we 
consider a data set discussed by Cook and Weisberg (1994, 1999b). Lean body 
mass L is regressed on the logarithms of height, weight, red cell count, white cell 
count and hemoglobin, plus an indicator for gender, for a sample of 202 individ- 
uals training at the Australian Institute of Sport. Thus, we have five many-valued 
predictors that comprise X and one qualitative predictor, gender, which we denote 
as G with G = 1 for males and G =2 for females. 

When attempting to reduce the dimension of the predictors to facilitate 
visualization, we are faced with the issue of how to deal with G .  There are several 
possibilities represented in the literature. A first possibility is to simply apply 
a dimension reduction method such as SIR to the regression of L on (X, G), 
but practical and theoretical issues raise some doubt about its usefulness. As 
mentioned previously, the relevance of linear colnbinations involving qualitative 
predictors may not be clear. In addition, the linearity condition (3) may become 
tenuous and special uniqueness and existence issues arise for the central subspace. 

A second possibility is to apply a dimension reduction method to the marginal 
regression of L on X and attempt to incorporate G when interpreting the results. 
A third possibility is to proceed conditionally, applying a dimension reduction 
method within each gender and then comparing the results. These approaches are 
combined by Cook and Weisberg [(1994), Section 8.21, who studied a restricted 
regression involving only three of the five many-valued predictors mentioned 
above. Following their strategy, we start by applying SIR to the marginal regression 
of L on X. This produces two relevant SIR predictors, iriX and i$X,  because-
the large sample tests described in Section 2.2 lead to an estimate of 2= 2 for 
the structural dimension. Figure 1 shows plots of L versus ?{X and irhX. Given 
the obvious dependence between X and G, the first open question concerns the 
relevance of these marginal results to the investigation of L 1 (X, G) . 

Next, we applied SIR to males and females separately, identifying only one 
relevant predictor in each case, ?{,,,X and ? i i X  The sample correlation between 
i;,,lX and i{X is 0.977, and that between i i i X  and i;X is 0.986, suggesting 
that the relevant linear colnbinations for males and females are the same and 
coincide with the first SIR predictor identified by the marginal analysis. Two more 
questions arise: Can this informal finding be placed on a better foundation? Is it 
in contradiction with our previous conclusion that the marginal central subspace 
.SLlxis two-dimensional? 

It must also be noticed that informal comparison of the outcomes of conditional 
dimension reduction becomes unwieldy when the qualitative predictor W has 
several levels, especially if dependencies between X and W increase the likelihood 
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FIG.1 .  S~~~~zrnn~yplots , f i -o~~zthe regression o f L  on X :  (a) L vel:sits thefirst SIRpredictor i ; X  (lines 
represent OLS Jitted 1~n1zle.swithin gerzrler); (b) L ~>er:s~~.sthe second SIR predictor ?;X; o ~nnles,  

ferlznle.~. 



482 F. CHIAROMONTE, R. D. COOI< AND B. LI 

that the linear combinations relevant for each subpopulation regression differ 
[Cook and Critchley (2000)l. 

Postulating that subpopulation regressions share relevant linear combinations, 
Carroll and Li (1995) investigated methods for estimating the unknown parameters 
p E IW!' and a E IW'in models of the form 

where g is an unknown function, the error E is independent of (X, W), W has 
only two levels and Ind(W = 2) is an indicator variable for the second. Thus, they 
confined attention to a two-subpopulation case, in which one linear combination 
suffices for each subpopulation, and the same linear combination P'X serves for 
both. In addition, (7) limits the effect of W to an additive shift of PIX in the first 
argument of g. Carroll and Li suggested a two-stage estimation procedure when X 
and W are independent: first use SIR on the marginal regression of Y 1X to estimate 
Span(@) and then, given that estimate, use a different nonparametric method to 
estimate a.  When X and W are dependent, they suggest proceeding conditionally 
for the first stage: use SIR within each subpopulation to produce two independent 
estimates of Span@) and then combine these estimates using a weighted average. 
Back to our data, assuming temporarily that indeed vl = vl,, = v l f ,  Figure l a  
does not support a model of the form given in (7). 

In the next sections, we introduce a framework that allows us to connect 
marginal and conditional dimension reduction to the pursuit of a projection of 
X that preserves information on Y I(X, W). We then present methodology for 
combining conditional dimension reduction outcomes in what we call partial 
dimension reduction. This methodology overcomes complications due to the 
number of levels in W, and dependencies between X and W. Moreover, it does 
not refer to models such as (7) in which dimension reduction and the nature of the 
effect of W are postulated at the outset. For example, our approach would allow 
consideration of models of the form 

C C 

{a ,  x Ind(W = w)} + {/3; x Ind(W = w)}X; F. 

w = l  

where Ind(W = w), w = 1, . . . ,C, are indicator variables for the levels of W 

3. Partial dimension reduction. Recall that X E IWP is the predictor vector 
with respect to which one wishes to perform dimension reduction, while W 
is an additional predictor that is not to be included in the reduction-in our 
interpretation, we think of W as representing one or more categorical variables 
that identify w = 1, . . . ,C subpopulations. 

We consider the intersection of all subspaces 8 L IWP such that 

(8) Y lLXI(PyX, W). 
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Under the assumption that such intersection itself satisfies (8), we call it the 
partial central subspace relative to X, for the regression of Y on (X, W), and 

(W)  = dim(diy2) is the partial structaral indicate it with dy  l X .  Correspondingly, d;? 

dimension. A plot of Y versus P (wjX, expressed throogh any basis of d iy i  and 
Y,,x 

with points marked to indicate thi-w subpopulation, is a partial centml view. 
(W)Existence conditions and properties of d y l x  can be derived immediately from 

those of generic central subspaces. 
The idea of partial dimension reduction is similar to Dawid's (1 979) notion of 

sufficient covariates in experimental design. Dawid said that a set of covariates 
U is sufficient if the individual experimental units contain no further information 
about the response, given the treatment and U. Thinking of X as characterizing the 
experimental unit, W as the treatment and PgX as the sufficient covariates, this 
corresponds exactly to the partial dimension reduction condition in (8); we require 
the response to be independent of the experimental unit, given the treatment and 
the sufficient covariates. In particular, we look for the minimal sufficient covariate 
vector, which is given by P (w,X. 

8, jx 
Marginally (i.e., integrating out W), we have a distribution for (X, Y) and 

a CS, d Y I x ,  for the marginal regression of Y on X. Conditionally (i.e., within 
the subpopulations identified by W), we have distributions for (X, Y)J (W = w) 
and CS's, dy l (x ,w=w) ,  w = 1 , .  . . ,C, for the regression of Y on X within each 
subpopulation. For notational simplicity, we will use (X, , Y,) to indicate a generic 
pair distributed like (X, Y) I(W = w) . Correspondingly, 8y ,(x,w=w) = dy,,lx,, . 
Since we know how to produce inferences for d y j x  and dYw1x,, w = 1, . . . ,C, 
our next step is to understand the relationships between such spaces and the 

(W)partial CS, d y l x .  
Finally, we note for completeness that the notation dy l (x ,  is not defined here 

because, as mentioned in the Introduction, it is not clear how to perform dimension 
reduction on X and W simultaneously. 

3.1. Partial and n7arginal dimension reduction. As suggested by compar- 
(W)need not coincide with d Y l x .  Although untouched by the ing (1) and (8), JYlx 

dimension reduction exercise, W participates in the informational structure of the 
regression and thus shapes the conditional independence relation through which 
the reduction of X is performed. Depending on the features of the overall joint 
distribution of (X, W, Y),  diy2 and d y l x  might overlap in any fashion. We are 
particularly interested in identifying conditions under which 

We have the following two results: 

( W )PRoPosITIoN 3.1. If W IIXIPg(w)X or W1 YIP (w,X,then d y j x2 d y I x .
Y Ix 4 l x  
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In terms of interpretation, if W lLXIP crrl)X or W l L  Y lP (w)X as required by 
J Y  1X J Y  1X 

Proposition 3.1, partial dimension reduction does not miss any of the directions 
that are relevant to the marginal regression of Y on X. Consideration of W 
while attempting to reduce the X vector does not make any of these directions 
superfluous and might lead us to retain some additional ones. On the other hand, 
if W ll Y lX as required by Proposition 3.2, partial dimension reduction does not 
add to the directions that are relevant to the marginal regression of Y on X. 
Consideration of W while attempting to reduce the X vector might make some 
of these directions superfluous and does not lead us to retain any additional one. 
Finally, if WltYlX and Wlt  YIP (w)X, or if WVYlX and WIIXJP  (w)X, partial 

~ Y I X  4 1 x  
and marginal dimension reduction identify exactly the same space. 

(W )It is interesting to notice that g y l x2 Jylxin designed experiments, where W 
represents a treatment randomly assigned to experimental units characterized by 
the value of X. In these situations, X l i  W by design, and therefore W llXlP (w)X, 

J Y I X  

so the first of the two sufficient conditions in Proposition 3.1 holds. 

3.2. Puvtinl urzcl corzditionul dimerzsion reduction. The following proposition 
( W )connects the partial CS, J y l x ,to the CS's .SYuIX, for Y, on X,, w = 1 , .  . . , C; 

$ indicates the direct sum between two subspaces (V1 $ V2 = ( u l  + v2; v l  E V1, 
v2 E V2)). 

Although the within-subpopulation spaces dY,jx,, w = 1, . . . ,C, can overlap 
in any fashion, the partial CS always coincides with their direct sum. 

Cook and Critchley [(2000), Proposition 11 established a general relation 
between the marginal regression of Y on X and the conditional subpopulation 
regressions of Y, on X,, w = 1, . . . , C: 

where dwjx is the central subspace for the regression of the qualitative predictor W 
on X. In effect, g w l xcarries the "joining information" to connect the individual 
subpopulation regressions. They also argue that, while it is theoretically possible 
to have proper containment in (9), in practice we may normally expect equality. 
Combining (9) with Proposition 3.3 we have 

If X l i  W, then we are led back to the conclusion of Proposition 3.1. 
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Equation (10) is useful because it suggests that, when equality holds, we can 
expect the marginal CS Jy lxto be larger than the partial CS Q F and that the ~ 
"difference" is due to the joining regression of W on X. This may then account for 
the finding of 2= 2 in the regression of Section 2.3: the dimension of J L x  may 

consist of one dimension from dK4 = dLgIX, and one dimension from d G x .  
If that were the case, then the partial central subspace would be one-dimensional, 
and a single two-dimensional plot would summarize the regression of L on (X, G) . 

( G )But we still need a sound method to estimate J L I X .  
( W )Proposition 3.3 suggests that 8y,xcan be estimated by combining dimension 

reduction within subpopulations. Focusing on a generic subpopulation, indicate 
with p, and C ,the mean and covariance of Xw, assume that C, is invertible 
and standardize X, to Zw = x,~"(x, - 8,). From (2). we have dy,,IX,, = 

z;'I2 8y,, z,, and therefore 

This relationship is the starting point to adapt SIR for inference on 8 r 2 .  We call 
this method partial sliced inverse regression. 

4. Partial sliced inverse regression. Here, we introduce the simplifying as- 
sumption that the predictors covariance structure is the same across subpopula- 
tions: 

Departures from this assumption do not alter the overall logic of partial SIR, but 
introduce scaling issues affecting spectral decompositions and large sample testing 
for rank. Also, this assumption may be appropriate in an important subclass of 
regressions, including designed experiments as discussed previously. If (1 1) holds, 
we can rewrite Z, = CP;~(X,  - p,) for each subpopulation, and 

C 

( \ )  - .-112(@ J Y Z ) .J Y , X  - pool 
w=l 

In ordinary SIR we were able to concentrate on dYlz ,  eventually back-transforming 

to Jylxthrough C-'I2. Likewise, we can now concentrate on dy, IZ,,  
(W )  next step is to combine eventually back-transforming to Jylx throogh C i d g .  O L I ~  

subpopulation SIR analyses to recover @:=l dY,, jz, . 
denote a discrete version of Y,, the response in subpopulation w,  and 

consider E(Z, I?,,,) with its covariance marix 
?,Let 
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Averaging these matrices over subpopulations, we obtain 

which, in expanded notation for clarity, corresponds to COV(E(ZIY, W)). The last 
equality in (1 2) can be derived as follows: 

Because of the intraslice centering, E(E(ZIY, W) 1 W) = E(ZI W) = 0 and thus we 
are left with 

E{COV(E(Z?, W ) ) I  w}= E{E[E(z?, w)E(zY, w)'l w]}= E ( o ~ )= dW) 

Now, if linearity (3) holds within each subpopulation, that is, 

then we have E ( Z , I ? ~ )  t d C U zg Rywlzw, G Qywlzwor equivalently Span(@,) 
for each w,  and therefore 

Assuming that the coverage condition ( 5 )  holds within each subpopulation, which 
we call subpopulntion coverage, gives $,=IC Span(@,) = $z=l dYulz,. 

In summary, the population basis for partial SIR is as follows: 

PROPOSITION Assunze tlze conmon covariance condition ( 1  1) holds.4.1. 
Under lirzearity ( 1 3 )  and subpopulntiorz covemge, ns dejinecl irz (12) lzas 


= eC Byu IZ,.
w = l  

As in ordinary SIR, we can then reconstruct our space as 

where d = rank(@(w)), and the t j  's are eigenvectors corresponding to eigenvalues 
O j  # 0 in the spectral decomposition 

@("I = CP 
. t  t f ,  

J J J  
j=l 

Assuming that an iid sample (Xi, W;, Yi), i = 1, . . . , n ,  from the joint distribution 
of (X, W, Y) is available, partial SIR is applied according to the following 
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algorithm: Form moment estimates ji, , $,for the mean and covariance of X, in 
each subpopulation, pool the latter in an estimate of the common covariance: 

where nw is the number of observations from w. Standardize the predictor to 

ziW= - j i w )  i = w =2 ~ o ~ ~ ( ~ i w  1, . . . ,h, 1, . . . ,C. Next, following the usual 
recommendations for SIR [Li (1 991), Cook (1 998)], create a system of s = 1, 
. . . ,Hw slices on the sample range of Yw within subpopulation w ,  and calculate 
the intraslice mean vectors as 

where the sum is over indexes i of response observations Yiw that fall into slice s, 
and n,, is the number of observations in slice s, for subpopulation w. Since 
these mean vectors average to O over the slices within each s~~bpopulation ($ 

-
Hw
CS=In,wZ,yw= 0), sample versions of 0, for the various subpopulations are 

given by 

Now, a sample version of o ( ~ )can be constructed as 

and spectrally decomposed as 

The eigenvalues of 6'") are used to produce an estimate of the rank 2 (see 
Section 41) ,  while the eigenvectors are used to construct span(il, . . . ,i2), which 
estimates a lower bound under (13), and the whole JY,,z, under (13) and 
subpopulation coverage. 

Returning to the X-scale, one forms partial SIR predictors as ?',X, . . . ,GLX, 
where - -112-

GJ = t j ,  j = 1 , .. . , P ,  

and constructs the estimated (1 + &-dimensional partial central view for the 
regression as a plot of Y versus the first 2 such predictors, with points marked 
according to subpopulation. 
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4.1. Large sar7zple testing for rank of @(Iv). A summary plot of the response 
versus the first few partial SIR predictors, or a scatter-plot matrix of the response 
and all p partial SIR predictors, is generally informative. Nevertheless, as with 
SIR, inference about d is important for full effectiveness in practice. A test statistic 
of the form 

P 

(15) T(rs)=rz c B j  
~ = l n + l  

again can be used in an iterative fashion to esti~uate the rank. The next propo- 
sition concerns the asymptotic distribution of T(d) and is proved in detail in 
the Appendix. 

PROPOSITION Assurne tlze common covariarzce corzditiorz (1 1) lzolds.4.2. 
Let d = rank(@(w)),let P g ( w )  be the projection orz and let Q g ( w )  = 
Ip- P O ( w ) .  If, within each subpopulation w = 1, . . . ,C :  

therz the asyr7zptotic distribution of T(d) dqiineil irz (15) is X&-dpCi(,,pdl,where 

H = c:=,Hw is tlze surn of the number of response slicesfor each subpopulation 
used in tlze partial SIR algoritlzr?~. 

Again, (a) corresponds to coverage, (b) corresponds to linearity under coverage 
and (c) is a constant covariance condition required to obtain the asymptotic x2.  
Note also that (b) and (c) are satisfied if X,, is normal, and therefore Z,, -
N (0, I/,), within subpopulations. 

4.2. More orz tlze lean body mass regressiorz. Returning to the lean body 
mass regression introduced in Section 2.3, we used the likelihood methods 
implemented in the computer program Arc [Cook and Weisberg (1999b)l to 
investigate simultaneous power transformations of the five many-valued predictors 
so that the conditional distribution of the transformed predictors X((G = g )  is 
approximately normal with coluluon covariance matrix for g = 1 ,2 .  This led to the 
log transformation for each of the predictors. This procedure is usually effective for 
insuring that common covariance, as well as subpopulation linearity and constant 
covariance, conditions are met to a reasonable approximation. 

Next, using five slices within each subpopulation, we applied partial SIR to the 
regression of L on (X, G). The first two large sample SIR p-values were 0.000 and 
0.326, indicating that the partial central subspace is one-di~uensional, as hinted by 
our previous analysis. The summary plot of L versus the first partial SIR predictor 
shown in Figure 2 is quite similar to that shown in Figure la.  The correlation 
between the first ordinary SIR predictor of Figure l a  and the first partial SIR 
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FIG.2. Learl body inass L ver.sL1.stl~ejirstpartialSIRpredictor ?;X finnz regression of'L on ( X ,  G ) ;  
o males, ,feinnle.s. 

predictor of Figure 2 is 0.985, indicating that they are likely estimating the same 
linear combination of X. 

Our partial SIR analysis allows us to conclude that a single linear combination 
of the predictors is sufficient to describe the regression of L on X for both males 
and females. Moreover, it provides us with an estimate of this linear combination, 
the first partial SIR predictor ?;X. Using the estimated partial central view in 
Figure 2 as a guide, we can now develop linear models for the intragender 
regressions. The view suggests that location may be well captured by a mean 
function of the form 

while the variance function Var(L/X,G) = Var(L(vlX,G) may depend nontriv-
ially on v'X, especially for females. 

5. Discussion. In this article, we described how the theory of sufficient 
dimension reduction, and a well-known inference ~uethodfor it (SIR), can 
be extended to regression analyses involving both quantitative and categorical 
predictors. This extension significantly widens the applicative scope of dimension 
reduction, as a very large number of actual data sets do contain variables of both 
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types. All assumptions employed in our extension are similar to the ones used 
in traditional dimension reduction and play similar roles, except for the common 
covariance assumption (11) used in partial SIR. 

The results we presented open the way for a whole new class of theoretical 
and methodological developments, which are currently under investigation by 
the authors. First, the common covariance assumption can be abandoned without 
altering the logic of partial SIR. This requires taking scaling into account when 
selecting relevant directions and deriving large sample testing for rank, an issue 
that is not relevant in ordinary SIR, but should be considered when faced with 
several subpopulations with very different covariance structures for the predictors. 

Second, other well-known inference procedures for dimension reduction such 
as ordinary least squares [Li and Duan (1959)], principal Hessian directions [Li 
(1992)l and sliced average variance estimation [Cook and Weisberg (1991)l could 
be adapted to partial dimension reduction, in a fashion similar to the one we 
detailed for SIR. 

Third, partial dimension reduction can be viewed as a form of constrained 
exercise, in which one considers the informational role of all predictors, but limits 
reduction to a subset of them. With some modifications, our approach can be 
employed in cases in which W is not categorical, but is itself a vector of many- 
valued or continuous variables. This would be of particular interest in applications 
in which some predictors play a particular role, and must therefore be "shielded" 
from the reduction process. 

Last, the relationships we drew among partial, marginal and conditional central 
spaces have very interesting connections with (i) the nature of the interaction 
between X and W and (ii) theoretical and methodological aspects of dimension 
reduction for regressions with multiple responses. 

Progress on these fronts is likely to generate a significant leap in a branch of 
statistical theory and methodology (sufficient dimension reduction) whose scope 
is widening due to the increasing need for effective analysis strategies for high- 
dimensional data. 

The partial SIR method has been implemented as an add-on to Arc [Cook and 
Weisberg (1999b)l. The add-on can be obtained from an Internet address that is 
available from the authors. 

APPENDIX 

LEMMA A. 1. For generic random variables Vl, V2, V3, V4, tlze follovving 
equivalerzces hold: 
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A discussion of this result can be found in Cook [(1998),Chapter 61. 

PROOFOF PROPOSITION3.1. From Lemma A.l we have that, for a generic 
subspace 8, 

WILXJ(PgX,Y) and Y lLXIPRX 

YILXI(PgX,W) and WlLXIP8X. 

Thus, under the assumption that WlLXJP (w)X,
8, jx 

and therefore 8:; 2 d r l x .Again using Lemma A.1, 

Y ltW((PgX,X) and Y ILXIPgX 

t-. Y lLX/(PgX,W) and Y lLWIPgX. 

Thus, under the assumption that W l L  Y J P  (w)X,
8, jx 

( W )and therefore 8YIX 3) 8 y  l X .  

PROOFOF PROPOSITION3.2. Again we use 

Y lLWI (Pax ,  X) and Y lLXJP8X 

YlLX/(P8X,W) and YlLWIPgX 

as in the Proof of Proposition 3.1, noting that Y lL WJ(PsX,X) is obviously 
guaranteed by Y l L  WJX.Under such an assumption 

and therefore - S y  x 2 dE. 

PROOFOF PROPOSITION3.3. It is immediate to see that, for a generic 
subspace 8, 

Since 8172 satisfies the left-hand side of (16), it also satisfies 
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( W )This in turn implies Jy, X  3 JYw w = 1, . . . ,C, and therefore 

CSince "Q,,(x,,2 8 y Y , ~ x , , ,u)= 1, . . . ,C ,  the sum space satisfies the right-
hand side of (16). Hence 

Y ~ X I ( P @ Cw=l 8 y u , , x , , x ~w)?  
which implies 

(W)  CWe can conclude that J y I X  = ewrlJYu,(x,,,. 

Definitions and outline. Define 6 ,  = n,/n, 6, = &, Jsw = n,,/n, and 

f?,,= &. ~ l s o .let 

be the p x Hw matrix of weighted slice means for subpopulation w = 1, . . . , C ,  
and let 

- - -
z. = (61z.1,. . . , i?icZ C) 

be the p x H matrix of weighted subpopulation matrices, where H = c $ = ~  H,. 

Then 6(lY) can be expressed as 

&IV) =2,Z!,. 
We first investigate the joint asymptotic distribution of the smallest min(p - d ,  
H - d)  singular values of z.. using the general approach developed by Eaton and 
Tyler (1994). We then find the asymptotic distribution of T (d) using the fact that 

the nonzero eigenvalues of 6 ( w )  are the squares of the singular values of z . .  The 
matrix z., converges in probability to 

A I'where f,, -+ f , ,  = [PS(?,, = s)]'I2, and a,, = B.,BIW. The matrix Z .  
converges in probability to 

B. = (alB.1, . . . , acB.C), 
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where 2, -+P a,, = [Pr(W = w)]'I2, and = B..B!.. Now construct the 
singular value decomposition of B..: 

where r / and \Ir are orthonormal matrices with dimensions p x p and H x H ,  
and D is a d x d diagonal matrix of singular values. Next partition T' = (TI ,  To) 
and \Irf = (*I, q O ) ,  where rois p x (p  - d) and \Ira is H x ( H  - d). Then 
it follows from Eaton and Tyler (1994) that the asymptotic distribution of the 
smallest min(p -d ,  H -d) singular values of &Z. is the same as the asymptotic 
distribution of the singular values of the (p  - d) x ( H  - d) matrix 

where U is defined implicitly. Thus, the asymptotic distribution of T(d) is the same 
as that of 

which is the sum of the squared singular values of &U. Also 

where vec(U) is the (p  -d) (H -d) x 1vector constructed by stacking the columns 
of U. 

Partition \Ira = (\Ilbl, . . . , qbc)', where qO,has dimension H,, x ( H  - d).  
Then, because I'bB., =0 for all w, we have 

where U,, is defined implicitly. Because the U, are mutually independent, we can 
investigate the limiting distribution of a typical term &U, and then add the 
results. 

The rest of the justification is organized as follows: First, using (1 I), we 
show that the limiting distribution of &vec(U,) is multivariate normal with 
mean 0 and covariance matrix Q,,, and thus that the limiting distribution of 
f ivec(U) is normal with mean 0 and covariance matrix Q = xwQ,,. Next, 
we use conditions (a), (b) and (c) to simplify each Q,,,. We then show that 
Q is an idempotent matrix with rank (p  - d)(H - d - C). Consequently, T 
and thus Ta(rl(d) are distributed asymptotically as X 2  mndom variables with 
( p  - d) (H - d - C) degrees of freedom. 
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Limiting distribution of &vec(U,). The next step is to express &U, in 
terms of the original independent predictors. Working now in terms of X, let 

be the p x H, matrix of sliced means subpopulation w = I ,  . . . , C, let f, be the 
H, x 1 vector with elements f,,, s = I ,  . . . , H,, and let f, be the corresponding 
construction in terms of Jsw. Finally, for any vector u let D, denote a diagonal 
matrix with elements u, let P, = 2 be the projection on the span of u, and let 
Q, = I - P,. With these definitions we can write 

and 

Expanding this expression and collecting the four op(l)  terms leaves 

A -112 112where A = Cpool Cpool. The first term in this expansion contributes to the 

distribution of &U, but not to the distribution of c$=~&Uw: 

because B . . qo=0 by construction. Next, the third term equals 0: Since DfwQfw = 
(I -Dfwfwl',)Dfw we have 
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where 1, is an H, x 1 vector of 1's. Thus, multiplying both sides from the right 
by the nonsingular diagonal matrix @lfand rearranging terms yields 

Substituting this into the third term gives the conclusion. Finally, the fourth term 
is also 0 and thus 

Writing a typical column of - as f;' &(xs, - E(X~,)),/ii;;;(~., E(x.,)) 
and then applying the central limit theorem and the multivariate version of 
Slutsky's theorem, it follows that, as all rz,, + oo,& v e c ( ~ . ,  - E(x.,)) 
converges in distribution to a normal random vector with mean 0 and p Hw x p H,  
covariance matrix 

where VE, is a pH, x pH, block diagonal matrix with diagonal blocks Cov(X, I-
Y ,  = s) ,  s = 1, . . . , H,. It then follows that /ii;;;vec(U,) converges in distribu- 
tion to a normal random vector with mean 0 and ( p  -d)  (H, -d )  x ( p  -d )  (H, -
d)  covariance matrix 

where V, is a ( p  -d )  Hw x ( p  -d )Hwblock diagonal matrix with diagonal blocks -
r b c o ~ ( z ~ I Y ~= s ) r O ,  s = I , .  . ., H,. 

It follows immediately from (17) and (19) that, as rz + oo,&U converges to 
a normal random vector with mean 0 and covariance matrix Q = C ,  Q,. Before 
considering Q, we simplify Q, using conditions in the proposition. 

Simplifyirzg 9,. The behavior of Q, hinges on the block covariance matrices 
in V,: 

The second equality follows from condition (a) in the proposition. The third 
equality follows from condition (b), noting that Span(T1) = The 
fourth equality follows from condition (c). Thus, V, = I and 
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Calculating 9. We have 

where 

F; = (oh,. . . . .Oh(,, > , o + . . .ogc)' 
is an H x 1 vector with O,,, indicating an nz x 1 vector of 0's. Because B..Fw=0, 
F, E Span(qO).Thus, noting that /IF,, 1 1  = 1, FwFLis a projection onto a subspace 
of Span(qo). Because the Fw's  are orthogonal, c$=~FwFL is also a projection 
onto a subspace of Span(qo). With this it follows by straightforward calculation 
that 9 is a symmetric idempotent matrix with trace (H - d -C ) ( p- d),  which is 
the desired conclusion. 
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